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Viscous sintering : the surface-tension-driven flow 
of a liquid form under the influence of curvature 

gradients at its surface 
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(Received 23 September 1988 and in revised form 20 October 1989) 

A boundary-element method is applied to solve the equations describing the 
deformation of a two-dimensional liquid region under the influence of gradients of 
the curvature of its outer boundary. This research is motivated by a desire to obtain 
a better understanding of viscous sintering processes in which a granular compact is 
heated to a temperature a t  which the viscosity of the constituent material becomes 
low enough for surface tension to cause adjacent particles to deform and coalesce. 
The boundary-element method is capable of showing how a moderately curved initial 
shape transforms itself into a circle. Initial shapes showing more extreme curvature 
gradients, which are relevant in the initial stages of a sintering process, cannot be 
dealt with by the boundary-element method in its present form. The numerical 
solution of the continuous model shows a tendency to create oscillations in the outer 
boundary of the liquid region. On the other hand, an analytical small-amplitude 
analysis shows that rapid oscillations vanish exponentially fast. 

1. Introduction 
Sintering is a technique in which a compact consisting of many particles is heated 

to a temperature a t  which the mobility of the material is so high that contiguous 
particles coalesce. As a result, the cohesion of the compact increases with time. One 
of the oldest applications of this technology is to be found in the brick industry. 
However, nature itself shows many examples of sintering phenomena which predate 
human application of this technology by millions of years. The formation of rock 
strata from sandy sediments under the influence of high pressures exerted by later 
depositions is one such example. 

The whole complex of sintering phenomena cannot be explained on the basis of a 
single physical principle. Along with the great variety of materials in the physical 
world, a number of physical principles can be responsible for sintering in each 
particular case. Referring to a recent review by Exner (1979), we may mention (i) 
volume diffusion or (ii) surface diffusion of vacancies in the atomic structures of the 
materials involved, (iii) evaporation followed by condensation, and (iv) volume flow 
(viscous, plastic, viscoelastic, etc.) driven by surface tension. The last of these will 
concern us here. 

A relatively recent application of sintering is the production of high-quality glasses 
by means of what is known as the sol-gel technique. In this technique a gel consisting 
of a maze of interconnecting glassy strands and particles is grown from a suspension. 
A popular description of such an aerogel, which is extremely light as most of its 
volume is taken up by air, has recently been given by Fricke (1988). When the 
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aerogel is heated to sufficiently high temperatures, the viscosity of the glass becomes 
low enough for surface tension acting on the interior surface of the gel to cause the 
gel to collapse into a dense homogeneous material. Ideally, the final product is free 
of voids, and a high-quality glass is obtained that can be used, for instance, in the 
production of glass fibres for the telecommunications industry. 

Clearly, a deterministic description of the viscous flow of a structure as complicated 
as an aerogel is out of the question, even when we restrict ourselves to a simple 
Newtonian constitutive model. The structure is simply too stochastic for such an 
attempt to be successful. Recently, Scherer (1977, 1984) described another approach 
in which the gel is modelled by a regular three-dimensional array of interconnected 
liquid cylinders. On the basis of this model he was able to define a unit cell within this 
structure, and calculate its surface. Next, Scherer applied a rule, first introduced in 
the context of sintering by Frenkel (1945), namely that the work done by surface 
tension in decreasing the interior surface must be equal to the total heat produced 
by dissipation. It is here that a practical difficulty arises. To be able to calculate the 
dissipated heat, one must first give an exact description of the flow field. Scherer 
remarks quite rightly that it would be unrealistic to give an exact description of the 
fluid flow in a structure as complex as his unit cell, which, in itself, only roughly 
approximates to reality. He therefore proposes an approximate description of the 
flow, and likewise obtains a rough estimate of the heat produced. His main result is 
a graph showing the density of the gel as a function of time. 

Scherer’s analysis breaks down when the gel can no longer be modelled as an array 
of interconnecting liquid cylindrical bridges. This happens in the later stages of the 
process, when adjacent glass surfaces touch and pores are formed. In the earlier days 
of sintering theory Mackenzie & Shuttleworth (1949) made an attempt at  describing 
the dynamics of a compact with pores distributed throughout. Their approach was 
to distinguish the immediate neighbourhood of an individual pore and its farther 
surroundings. In the latter region the interplay between pores and liquid was 
summed, and this behaviour was somehow matched to the flow in the immediate 
vicinity of the particular pore under observation. These authors also applied 
Frenkel’s principle, coming up with a law describing the density of the compact as 
a function of time. 

Although, as we have already concluded, a deterministic description of the 
microscopic flow within an actual sintering compact is out of the question, much as 
it would be unrealistic to describe the mechanical behaviour of a macroscopic body 
on the basis of our knowledge of interatomic forces, scientists studying sintering 
phenomena have long been interested in the behaviour of very simple systems, for 
instance the coalescing of two spheres, or the sintering of a sphere onto a flat surface. 
In terms of our earlier simile we could call this the ‘atomic ’ theory of sintering. 
Although it is doubtful whether the fruits of this type of research will tell us directly 
how to deal with far more complex macroscopic systems, we may be able to extract 
constitutive laws from them. The correct constitutive laws will eventually enable us 
to develop a phenomenological theory for macroscopic systems. 

One of the first to study simple systems in a more or less systematic manner was 
Kuczinsky (1949~)  b ) .  He performed a number of experiments and applied Frenkel’s 
theory to derive an analytical description of his results. He was particularly 
interested in the diameter of the neck region between the two spheres as a function 
of the time. If this diameter is denoted by d and the time by t ,  then Frenkel’s 
principle tells us that d cc ti. If the driving force behind the sintering process is not 
surface tension, but rather one of the other physical principles we mentioned earlier, 
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then theories as simple as those of Frenkel’s lead to other exponents in the d vs. t 
relationship. This has placed a diagnostic tool in the hands of sintering scientists. 
Later the study of simple systems remained an integral part of sintering science, and 
we refer to authoritative reviews by Geguzin (1973) and Exner (1979) for more 
information. 

In this paper we shall present a method by which one can obtain an exact 
description of the sintering of simple systems, i.e. rather than using a global rule such 
as Frenkel’s, which only uses a rough estimate of the influence of viscous effects, we 
shall define the problem in terms of the field equations appertaining to viscous flow. 
Our aim is to develop a method which tells us how an arbitrarily shaped blob, driven 
by surface tension acting a t  its own outer boundary, transforms itself through time, 
ending as a perfectly round form. In order to limit the technical difficulties 
somewhat, we shall study only two-dimensional shapes here. As we shall see, it is the 
gradient of the curvature of the outer boundary which is the driving force. 
Obviously, this force is equal to zero for a circle. 

The numerical technique that we shall use to solve the model is one employing 
boundary elements. The problem is formulated first as a set of partial differential 
equations with boundary conditions. The partial differential equations are solved 
formally, which results in a set of integral equations involving the, as yet unknown, 
values of the dependent variables and their normal derivatives on the boundary. In 
many respects we shall follow the approach of Ingham & Kelmanson (1984) who 
applied the method to a number of potential and biharmonic problems, and, in doing 
so, demonstrated its effectiveness in solving them. This approach is numerical in that 
the boundary is replaced by a polygon. The integrals appearing in the integral 
equations are replaced by sums of integrals, one along each of the sides of the 
polygon. However, whereas Ingham & Kelmanson approximate the dependent 
variables by constant values on each of the sides of the polygon, we shall strive for 
greater accuracy by taking continuous approximations for these unknowns, which 
vary linearly along each of the subregions of the polygon. Also, whereas these authors 
try to fit their unknown boundary within a framework that involves a given function 
with a few free parameters, we shall track the boundary on the basis of the velocity 
field obtained after solving the equations. 

2. Equations and boundary conditions 
We consider a two-dimensional incompressible fluid flow that is characterized by 

the physical parameters 7, the dynamic viscosity; y ,  the surface tension ; and I ,  which 
is a characteristic length. The dimensions of these parameters are N s m-2, N m-l and 
m respectively. On the basis of these three parameters we can define a characteristic 
velocity u,, a characteristic pressure p ,  and a characteristic time t ,  as follows: 

y ,  p = -  Y 17 u =-  , I ’  t ,=-  
c 7  Y ’  

Henceforth, we shall assume that all variables, both the dependent and the 
independent ones, have been rendered dimensionless by means of u,, p, ,  t ,  and 1, or 
combinations of these values. 

u c  lP - YlP 
7 r 2 ’  

If the Reynolds number 
R e = - - -  

where p is the density (kg mP3) of the fluid, is much less than unity, the creeping-flow 
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FIGURE 1. Geometrical configuration. 

equations are valid. For a typical sintering system consisting of a glassy aerogel we 
have (Reed 1988, p. 462) 7 x lo* N s mP2 and y x 10-1 N m-'. The particle size can 
be put at  a few microns, although initially it can be much smaller. Therefore, u, is 
of the order of m s-l which means that the process is extremely slow. For this 
system Re is of the order of 1O-l'. 

Our region of flow is defined by a closed curve r which encloses an area denoted by 
B (figure 1) .  In  terms of the stream function + and the vorticity w the governing 
equations, which are valid in B+r, are (Batchelor 1967) 

V2$ = w ,  (3) 

v2w = 0. (4) 

Since r is a moving boundary, we need three boundary conditions. Two of these can 
be derived in the manner explained by Ingham & Kelmanson (1984, chap. 5). 
Requiring that the component of the stress vector along r is equal to zero, we have 

where we have written $' instead of a+G./an. The normal component of the stress 
vector is proportional to the local curvature of r. This condition is expressed as - .  

follows : 

where s is the arclength along r and K is the curvature function. The details of the 
derivation of the equations can be found in a companion paper (Kuiken 1990). 

Assuming, for the sake of argument, that r is fixed, we must conclude that the 
solution to the problem defined by (3)-(6) will lead, in general, to a non-zero flow field 
on f. This would mean an inflow through one part of r and an outflow elsewhere. 
Since f is a material boundary, this cannot be accepted. Therefore, the displacement 
of r follows from the velocity field just defined. This leads to our third boundary 
condition 

where r is the dimensionless time, 
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subject to the initial conditions 

x = x A ,  y =  yA at  r = r o .  (8) 
It is interesting to note that for given r, the equations and boundary conditions 

(3)-( 6) are linear and homogeneous, except for the non-homogeneous right-hand side 
of (6). Thus, the forcing term in this problem is the derivative of the curvature K 

along the curve r. When K is constant all along r, i.e. a hen r is a circle, the forcing 
term is zero. Apparently, this is the state the system will seek to attain, which will 
be achieved after successive applications of (7)  and (8). 

3. Solution method 
A formal solution to (3) and (4) can be given in terms of the values of the unknowns 

on the boundary r. Evaluating this solution on r, we obtain a system of two coupled 
integral equations (Ingham & Kelmanson 1984) : 

where r(s)  and r(s") denote position vectors on r. It is understood that the normal 
derivative a/an is taken with respect to the current vector r(s"), i.e. r(s") is allowed to 
vary in an infinitesimal sense along a line normal to r. Therefore we have 

ar(s") 
an 
-- - n. 

To illustrate this we derive (figure 2) 

which is a well-known result. The integrand of the first integral appearing in (9) 
becomes singular and non-integrable when s" = s. A finite value is obtained by 
defining the integral as the principal value, i.e by excluding s" = s from the 
integration path and approaching this point from both sides at the same rate. 

We have solved the integral equations (9) and (10) together with the boundary 
conditions (5 )  and (6) numerically by replacing r by a polygon. The vertices of this 
polygon are given by (zi ,yt) , i  = 1 ,m in any Cartesian coordinate system (5 ,~ ) .  In 
each of these vertices, which we shall also use as collocation points, the functions 
qG-(s), $'(s), w ( 8 )  and w'(s)  are given by the, as yet unknown, values @g,&,wwz,wi 
respectively. Each of the integrals appearing in (9) and (10) is now replaced by a sum 

17 F L M  214 



508 H .  K .  Kuiken 

FIGURE 2. Graph explaining the derivation of (12). 

of m integrals, one along each of the sides of the polygon. In between the vertices the 
unknown functions are obtained by linear interpolation. For instance 

Ingham & Kelmanson (1984) assume $ and w constant on each of the subintervals 
defined by (13). The present approach can be expected to yield more accurate results, 
but the algebra becomes rather more awkward. 

When (13), and a similar equation for w ,  are substituted in (9) and (lo), two sets 
of linear equations involving $i,  wi and their derivatives with respect to s result : 

m 

j-1 

m 

j-1 
CAi,wj+Bijwj = 0 ( i  = 1,2, .  . . ,m) .  

The coefficients A,,, B,,, C, and D,, involve complicated integrals over each of the 
subintervals defined by (14). These integrals can be evaluated analytically (Kuiken 
1990), which reduces the numerical work substantially. 

In addition to the 2m equations (15) and (16) there is another set of 2m equations 
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resulting from the two boundary conditions (5) and (6). The character of these 
boundary conditions is that of two coupled second-order ordinary differential 
equations. These can be discretized in an obvious manner. This and other particulars 
of the numerical method are explained in the aforementioned companion paper 
(Kuiken 1990) to which we refer the interested reader. The end result of the 
discretization process is a set of 4m x 4m linear equations for the unknowns y i t ,  yi:, 
wd and w: defined in the collocation points. The first set of 2m equations results from 
the integral equations (9) and (10). The remaining 2m are the discretized analogues 
of the two boundary conditions ( 5 )  and (6). The parts of the matrix which result from 
these last contributions are sparse. This enables us to reduce the 4m x 4m matrix to 
one that is only 2mx2m, which helps a great deal in limiting the computer time 
needed to  solve the title problem. 

We can now simulate the motion of the boundary r by a time-stepping process 
which results when we apply a simple forward Euler rule to the moving-boundary 
condition (7),  subject to the initial condition (8). Higher-order approaches to this 
aspect of the problem are possible, but it would not seem reasonable to explore the 
merits of these before the stability problem we shall discuss later has been dealt with 
successfully. 

4. The damping of small disturbances 
It will be of interest to know how small disturbances are damped by a system 

which flows solely under the influence of tangential gradients in the curvature of its 
outer boundary. If the disturbances are small in relation to the size of the system 
itself, we are justified in considering the fluid system to be infinitely large. We shall 
therefore use a Cartesian coordinate system (x, y) in which to describe it, assuming 
that the equilibrium outer surface coincides with y = 0. The disturbed surface, which 
is not in equilibrium, is at y = f(x), the fluid residing in y <f(z), - co < x < CO. Since 
the disturbance is small, we have If1 < 1 and Idf/dxl < 1 for all x. All the dependent 
variables, viz. $ and w ,  are small as well. Therefore, in the spirit of an ordinary 
perturbation approach, we can take the boundary conditions ( 5 )  and (6) on y = 0, 
neglecting the nonlinear terms, i.e. 

a 2 $  a3$ aw dy 
ax2 a x 2 a y  ay dx3 

w = 2-, 2- +-=-- on y = O  ( - c o < z < c o ) .  (17a ,b )  

The field equations are given by (3) and (4). In  the derivation of (176) we 
approximated K by d2fldx2, which is the leading term in a small-term expansion of 
the curvature. 

The linear boundary-value problem defined above can be solved by means of the 
Fourier transform. The solution for ++ is found to be 

where it should be remembered that y < 0 everywhere in the flow field. I n  (18) f(p) 
is the Fourier transform off, viz. 

f l p )  = eipzf(x)dx. 
J -m 

17-2 
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The vertical velocity of the boundary can now easily be derived: 

dx ly-0 

Using (19) we have 

so that 

dx 

where a prime stands for differentiation with respect to the argument. 

dimensionless time, then we have 
If we now consider the boundary as a function of both x and 7 ,  where T is the 

(23) 
af 
aT 

v = -  

and, using (22), we can deduce an integro-differential equation for f(x, 7 )  : 

which is subject to the initial condition 

and conditions at infinity : 
f (X,  0) = f o ( 4  

f + O  when IxI+ 00 (all T 3 0). 

With aid of both the Laplace and the Fourier transforms we are able to derive the 
solution of (24) which satisfies (25) as follows: 

As an example we consider 
1 

fo(4 = m. 
In considering (28) we should realize that the shape of the original surface is efo(x), 
but that we have scaled out the small parameter e in conformity with our 
perturbation approach. Substituting (28) in (27) we find after some manipulation 
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and 

It is interesting to see that for 1x1 > 1 the boundary moves upwards first before it 
moves downwards permanently. At any time 7 the boundary is still moving upwards 
when 1x1 > 1+3. Only the part of the boundary for which 1x1 < 1 moves in a 
downward direction right from the start. 

Another matter worth looking into is how fast wriggles in the surface are evened 

(31) 
out. Let us consider 

where again we have scaled out the small parameter e which determines the actual 
elevation of the surface above y = 0. Substituting (31) in (27) we find 

f & )  = coswx, 

f ( x ,  T )  = e+w cos wx. (32) 

Clearly, a larger frequency u leads to a faster damping process. We should realize 
that we cannot let u grow indefinitely, since the analysis becomes invalid for those 
larger U-values. Indeed, in the approximation of the curvature leading to (17) we 
disregarded dfo/dx in comparison with unity. We are only permitted to do so as long 
as 80 -4 1. 

There is a striking difference between the asymptotic properties of (29) and (32) for 
7 -f 03. Apparently, a non-oscillating boundary form is flattened out a t  a much 
slower pace than one which oscillates throughout. Assuming that fo(x) tends to zero 
fast enough for 1x1 + m, we obtain from (27) 

Therefore, if the integral appearing in (33) differs from zero, the damping velocity is 
eventually inversely proportional to time. Faster damping velocities are achieved if 
the integral is equal to zero. This condition means that the average elevation of the 
disturbed surface above the plane y = 0 is equal to zero, which seems physically quite 
realistic. 

5. Results and discussion 
A computer program has been written on the basis of the model presented in this 

paper. To give an idea of the kind of results that can be obtained with it,  we present 
figures 3 (a) and 4(a). The first of these shows how the ellipse x2 + 10y2 = 1 is 
transformed into a circle, the second in what way a dent disappears. As expected, 
order-one changes in shape are achieved when the dimensionless time 7 reaches 
values that are of order unity. In fact, the final shapes in figures 3 (a)  and 4 ( a ) ,  which 
appear to be circular to the eye, were obtained for 7 = 10. 

Figures 3 ( b )  and 4 ( b )  reveal how particles on the surface move in time. Contrary 
to what figure 4 (a )  would seem to suggest, figure 4 ( b )  shows that all material points 
on the surface move a considerable distance during the process of deformation. This 
is also true for the points in the region where consecutive shapes intersect. Figure 4(b)  
demonstrates that certain material points traverse fairly curved paths on their way 
from the initial shape to the final one. 

The examples of figures 3 and 4 refer to shapes for which the curvature function 
K ( S )  varies only moderately. It would be of further interest, particularly with a view 
to real sintering situations such as the confluence of two spheres, if we could tackle 



512 H .  K .  Kuiken 

FIGURE 3. (a) The transformation of an ellipse into a circle. The various graphs refer to shapes for 
various values of the time T .  ( b )  The paths followed by material points of the boundary. The 
deformation process is that of figure 4 (a). The arrows denote both the direction of flow and the final 
positions of the material points. The dot8 refer to the initial positions. 

initial shapes such as that of figure 1. Unfortunately, in its present form, our 
numerical procedure seems to be unable to handle these more extreme forms. The 
reason is to be found in the fact that a discretized representation of r leads to 
inaccuracies in dK/ds which, as one can see from (6 ) ,  is the driving force in the 
problem a t  hand. Clearly, round-off errors are always present, and these affect the 
position vector r (s ,7)  directly. Inaccuracies of the position vectors lead to much 
increased inaccuracies in the curvature function K(s) .  Since the driving force is 
obtained by a further differentiation, the resulting inaccuracies may seriously affect 
the time-stepping process. 

Of course, a periodic smoothing of the data defining r may be a remedy for these 
ills. However, numerical smoothing is somehow an added physical phenomenon in 
disguise, a phenomenon which was not part of the original continuous model. If the 
effect associated with this phenomenon is stronger than the driving force relating to 
the curvature gradients, then adding this particular smoothing procedure means that 
we are solving some problem, but not the one we intended to  solve at the outset. 
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FIGURE 4. (a)  The deformation of another liquid form. ( b )  Motion of material boundary points 
of the shape depicted by figure 4(a). 

As we have seen, rapid oscillations of r are damped rapidly by the continuous 
model. Our analytical treatment of small disturbances gave ample proof of this. 
However, when sampling a boundary fraught with rapid small-amplitude oscil- 
lations, as we are doing when we represent r by a polygon, the values of K ( . Y ) ,  and 
most certainly those of drc/ds, that we get are no longer representative of the average 
values of K ( S )  and dK/ds. But these average values, on the whole, determine the 
average deformation behaviour of r. See for instance figure 5 ,  where we have 
represented the curve x2 + 10y2 = 1 along with a rapid oscillation of small amplitude 
superposed upon it. Our small-disturbance analysis shows that the oscillatory 
behaviour will disappear exponentially fast, and the subsequent flow behaviour will 
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FIGURE 5. A shape spoiled by rapid oscillations of a kind that may be generated by the 
numerical process. 

be that depicted in figure 3 (a) .  The present numerical process, on the other hand, will 
fail to simulate this natural process, since a sampling of the curve of figure 5 will lead 
to a wildly varying driving force. Clearly, some kind of smoothing will have to be 
carried out here. The question is: how to define an honest smoothing routine which 
does not represent a dominant physical effect that  relegates the real driving force to 
only a second position ? 

It was pointed out to the author by S. Richardson (1989, personal communication) 
that, strictly speaking, the model given by (3)-(6) does not ensure a unique solution. 
Indeed, a superimposition of an arbitrary rigid-body translation and an arbitrary 
rigid-body rotation upon any particular solution will not alter the stress field a t  the 
outer boundary. Richardson suggests that in addition to (5) and (6) we should require 
that both linear and angular momentum vanish. I n  our two numerical examples 
these two conditions are satisfied automatically, on account of the double symmetry. 

The older theories of sintering, e.g. Frenkel (1945) or Scherer (1977), exploit the 
global rule which states that the total work done by surface tension to reduce the 
outer surface area should be equal to  the heat released by viscous dissipation. It may 
be worthwhile to illustrate this rule here. I n  normalized terms the rate a t  which work 
is done by surface tension is given by 

where, as before, r is the time, r(7) is the closed curve which encloses the viscous 
region Q, and s is the arclength. Using some well-known rules, we may rewrite (34) 
as-follows : 

(35) 

where u is the velocity vector, t the tangent vector along r a n d  n the outward normal 
which is obtained from t by an anticlockwise rotation. 

To obtain an expression for the heat of dissipation we refer to Batchelor (1967, 
pp. 152-153). I n  Batchelor’s notation we have 

where aij is the stress tensor and u, represents the components of the velocity vector 
u in some Cartesian coordinate system xi. Since a,n,  is the force acting on the 
boundary r, we have 

a,j nj = K n i ,  (37) 
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from which we have Wdiss = Wsurf. (38) 
Finally, we remark that the relevance of the method developed here for the 

simulation of sintering processes is limited to the later stages of these processes, when 
the curvature of the internal surface of the compact shows only moderate variations. 
As a possible application we may think of the classic problem first studied by 
Mackenzie & Shuttleworth (1949). Considering a unit cell of a compact consisting of 
a regular array of spherical bubbles of equal size embedded in a viscous liquid, we 
have a problem that we might be able to solve with the present method. Of course, 
as it now stands, our method can be applied only to a two-dimensional analogue of 
this problem. 

Note added in proof. While the present paper was in the hands of the referees, the 
author discovered that Dr R. W. Hopper of Lawrence Livermore National 
Laboratory (California, USA) had succeeded in getting analytical solutions for 
certain classes of two-dimensional viscous-sintering problems. Among these is the 
important two-cylinder problem. (See Hopper 1990a, b, c.) 
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